NEW FLASH

[qdeck style=”width: 300px !important; min-height: 250px !important; border-width: 4px !important; border-color: #ff3333 !important; border-style: dashed !important;”]

[h] FLASH CARD

[i] [start]

[q] QUESTION

[a] ANSWER

[q] FFFFFFFFFFFFFFFFFFFF

[a] [latex] If \(\lim_{x \to a} f(x) = l\; and \; \lim_{x \to a} g(x) = m\), then

\( \lim_{x \to a} \left[ {f(x) \pm g(x)} \right] = l \pm m\)
\( \lim_{x \to a} f(x) \cdot g(x) = l \cdot m\)
\(\lim_{x \to a} \frac{{f(x)}}{{g(x)}} = \frac{l}{m}\), where \)m \ne 0\)
\(\lim_{x \to a} c{\text{ }}f(x) = c{\text{ }}l\)
\(\lim_{x \to a} \frac{1}{{f(x)}} = \frac{1}{l}\), where \)l \ne 0\)[/latex]

[latex]Cot\theta = \frac{{base}}{{perpendicular}} = \frac{x}{y} = \frac{{Cos\theta }}{{Sin\theta }} [/latex]

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[q] QUESTION

[a] ANSWER

[x] Exit text
(enter text or “Add Media”; double-click to format)

[restart]

[/qdeck]

 

Leave a Comment